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SUMMARY

The mouse placenta was unveiled as an important
reservoir for hematopoietic stem cells (HSCs), yet
the origin of placental HSCs was unknown. By track-
ing developing HSCs by expression of Runx1-lacZ
and CD41, we have found that HSCs emerge in large
vessels in the placenta. Analysis of Ncx1�/� em-
bryos, which lack a heartbeat, verified that HSC
development is initiated in the placental vasculature
independent of blood flow. However, fewer CD41+
hematopoietic cells were found in Ncx1�/� placentas
than in controls, implying that some HSCs/progeni-
tors colonize the placenta via circulation and/
or HSC emergence is compromised without blood
flow. Importantly, placentas from Ncx1�/� embryos
possessed equal potential to generate myelo-
erythroid and B and T lymphoid cells upon explant
culture, verifying intact multilineage hematopoietic
potential, characteristic of developing HSCs. These
data suggest that, in addition to providing a niche
for a large pool of HSCs prior to liver colonization,
the placenta is a true site of HSC generation.

INTRODUCTION

Regeneration of blood cells throughout the lifetime of an individ-

ual is dependent upon HSCs and their ability to self-renew and

differentiate into all blood lineages (Weissman, 2000). Of all

stem cells, HSCs have had the greatest therapeutic impact on

human disease, specifically in leukemia and aplastic anemia

(Bordignon, 2006). However, due to the shortage of matching

donors for transplantation and the low yield of HSCs in more ac-

cessible sources such as cord blood, many patients are unable
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to benefit from this therapy (Cairo and Wagner, 1997). Attempts

to expand HSCs in vitro have failed due to loss of self-renewal

ability and a propensity to differentiate in culture, highlighting

the importance of the microenvironment in the maintenance of

stem cell properties. Likewise, derivation of functional HSCs

from human embryonic stem cells has not yet been achieved,

as the in vitro-derived hematopoietic progenitors poorly self-

renew in vivo (McKinney-Freeman and Daley, 2007). To succeed

in these endeavors, basic research on how fetal microenvi-

ronments support the development of self-renewing HSCs is

essential.

Although defining the stem cell niche for adult HSCs has

become an extensive area of research and both the cellular

and molecular components of the niche are being unraveled,

fetal HSC niches have proven highly complex and their unique

molecular features remain relatively undefined (Martinez-Agosto

et al., 2007). HSCs in adult mice reside in the bone marrow, in the

endosteal surface of trabecular bone, and in the vascular sinu-

soids (Adams and Scadden, 2006; Kiel and Morrison, 2006;

Suda et al., 2005; Wilson and Trumpp, 2006; Zhang et al.,

2003). During embryogenesis, HSCs migrate through a number

of anatomical sites that likely impart unique cues to the cells as

they transition through different developmental stages (Mikkola

and Orkin, 2006). The development of HSCs begins when meso-

dermal precursors become specified to the hematopoietic fate in

a process that is dependent on the bHLH transcription factor

SCL/Tal-1, whereas subsequent establishment of the definitive

hematopoietic program and emergence of HSCs requires the

core binding factor Runx1/AML (reviewed in Teitell and Mikkola,

2006). Of note, newly formed HSCs are not equivalent to adult

HSCs, as they require a maturation process before they can

engraft into adult bone marrow and self-renew (Mikkola and

Orkin, 2006; Yoder et al., 1997a, 1997b). Furthermore, in con-

trast to relatively quiescent adult HSCs, fetal HSCs are highly

proliferative as they expand to establish a supply of HSCs for

adult life (Bowie et al., 2006; Kim et al., 2007; Lessard et al.,

2004). Thus, both the cell-intrinsic regulatory mechanisms that
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govern developing HSCs and the microenvironmental niches

where HSCs reside evolve during embryogenesis. To under-

stand the impact of the microenvironment in establishing HSC

properties, it is critical to define the cellular niches that support

the emergence, maturation and expansion of HSCs.

The first embryonic hematopoietic cells, the primitive erythro-

blasts, are generated after gastrulation in the yolk sac, as is

a second wave of myelo-erythroid progenitors (Lux et al.,

2007; Palis et al., 1999). HSCs capable of engrafting newborn

mice are found in the yolk sac and para-aortic splanchnopleure

(P-Sp) within the embryo proper as early as E9.0 (Yoder et al.,

1997a), whereas the first HSCs that possess adult repopulating

capability are found in the aorta-gonad-mesonephros (AGM)

region of the embryo proper slightly later, after E10.5 (Cumano

et al., 1996; Jaffredo et al., 2005; Medvinsky and Dzierzak,

1996). During subsequent days, definitive hematopoietic pro-

genitors and HSCs colonize the fetal liver. However, the low

number of HSCs found in the AGM and the extended develop-

mental time that elapses before a substantial number of HSCs

have colonized the liver raised the question of whether HSCs

may also be generated in the yolk sac and/or in other yet uniden-

tified sites (Kumaravelu et al., 2002). Work by us and others sub-

sequently showed that the mouse placenta harbors a large pop-

ulation of HSCs during midgestation (Alvarez-Silva et al., 2003;

Gekas et al., 2005; Ottersbach and Dzierzak, 2005). The placen-

tal HSCs appear as early as in the AGM region and before any

HSCs had colonized the liver or were circulating in the blood.

The placental HSC pool continues to grow, ultimately harboring

15-fold more HSCs as compared to the AGM. As the placental

HSC population declines, the liver HSC pool expands, suggest-

ing that the placenta may be a major source of the HSCs that

seed the liver (Gekas et al., 2005). These findings nominated

the placenta as an important hematopoietic organ, unique in

its capacity to sustain a large pool of HSCs while segregating

them from signals that promote differentiation. However, these

studies did not determine whether the placenta is capable of

producing HSCs de novo or whether it functions solely as a niche

for the maturation and expansion of HSCs originating from other

sites.

Defining the origin of HSCs in vivo has been complicated by

circulation and the limitations of functional assays for developing

HSCs. Once a heartbeat is initiated at E8.5, any cell within the

vasculature may be released into circulation. Although free distri-

bution of progenitors is delayed until E10.5 (McGrath et al.,

2003), adult repopulating HSCs are found only after this time

and may therefore have circulated from other sites. Because

developing HSCs are unable to engraft in lethally irradiated adult

bone marrow before day E10.5, one cannot directly assay HSC

potential in the earlier tissues with the standard in vivo assays.

As transient embryonic progenitors with restricted myelo-

erythroid potential develop prior to the emergence of HSCs,

documentation of multilineage differentiation ability, including

lymphoid potential, is essential to distinguish developing HSCs

from transient embryonic hematopoietic progenitors.

As all hematopoietic cells are derived from mesoderm, track-

ing the fate of the mesodermal tissues is critical when origin of

hematopoietic cells is being explored. The placenta is comprised

of trophectoderm and two mesodermal components: the cho-

rionic mesoderm, which forms a continuum with the yolk sac,
and the allantoic mesoderm, an appendage arising from the pos-

terior primitive streak. The allantoic mesoderm migrates toward

the ectoplacental cone, fuses with the chorion, and intertwines

with the trophoblast to form the placental vascular labyrinth,

which facilitates the exchange of nutrients, gas, and minerals be-

tween mother and fetus (Cross, 2005; Inman and Downs, 2007).

Interestingly, earlier studies on quail-chick chimeras showed

that the avian allantois is a source of definitive hematopoietic

cells (Caprioli et al., 1998, 2001). Recently, the hematopoietic

potential of the mouse chorionic and allantoic mesoderm was

assessed (Corbel et al., 2007; Zeigler et al., 2006) by in vitro

culture of the tissue explants that were harvested prior to chorio-

allantoic fusion and circulation. Strikingly, these studies docu-

mented myelo-erythroid hematopoietic potential in both the

allantoic and chorionic mesoderm, supporting the hypothesis

that HSCs may be generated in the placenta. Yet, these studies

did not assess lymphoid potential of the rudiments. Of note, one

study in 1979 described B lymphoid potential in the midgestation

placenta; however, the origin of these cells was not defined

(Melchers, 1979).

Our goal was to determine whether the mouse placenta is a

true site of HSC generation and identify the cellular niches in

which placental HSCs reside. By using the Runx1-lacZ and

Ncx1 knockout mouse models, we demonstrate that definitive

hematopoiesis is autonomously initiated in the placenta. As the

Ncx1�/� embryos lack a heartbeat due to a defect in the sodium

calcium exchanger 1 (Koushik et al., 2001), our data verify with-

out input from circulating cells that HSC potential is present in

the placenta. The placental-derived hematopoietic cells were

capable of producing both myelo-erythroid and B- and T lym-

phoid progeny, fulfilling the criterion of multipotentiality that is

the defining feature of developing HSCs. The process of HSC

emergence is always intimately associated with the large vessels

in the placenta. Furthermore, the small vessels in the placental

labyrinth may serve as a niche where HSCs convene for matura-

tion and expansion prior to seeding the fetal liver.

RESULTS

Runx1 Transcription Factor Marks the Onset
of Definitive Hematopoiesis
To identify developing HSCs and define the cellular niches that

support HSCs in the placenta, we used the Runx1-lacZ knockin

mouse model. Runx1 is essential for the emergence of definitive

HSCs and remains expressed in HSCs throughout fetal develop-

ment and adult life (North et al., 2002). As in other hematopoietic

tissues, Runx1 expressing cells in the placenta coexpressed

markers of developing HSCs. (Figure S1 available online).

In Runx1lacZ/+ embryos, which have only one targeted allele,

HSCs develop in all hematopoietic organs. Although the kinetics

of HSC development has been reported to be slightly altered due

to Runx1 haploinsufficiency (Cai et al., 2000), localization of

Runx1-lacZ+ cells has been used to identify developing HSCs

and their niches. In contrast, HSC generation is abolished in

Runx1lacZ/lacZ and Runx1lacZ/� embryos, which have both Runx1

alleles targeted. However, the activity of the Runx1 locus persists

in the null embryos and drives the expression of the lacZ

reporter, marking the sites where Runx1 dependent definitive

hematopoiesis is initiated (North et al., 2002).
Cell Stem Cell 2, 252–263, March 2008 ª2008 Elsevier Inc. 253
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Figure 1. Runx1 Expression Marks the Sites of Definitive Hematopoiesis in the Placenta

Paraffin sections stained with b-galactosidase (lacZ, blue), laminin (mesodermal derivatives, red), and cytokeratin (trophoblast and epithelial cells, brown).

(A) Runx1-lacZ+ cells in the dorsal aorta in the (a) Runx1lacZ/+ and (b) Runx1lacZ/lacZ embryos mark a known site of HSC emergence (E11.5, 40X). (c) Section from

E11.5 placenta illustrates the specific regions in the placenta: chorioallantoic vessels (CV) in the chorioallantoic mesenchyme (CM) connect to the umbilical cord

(data not shown), whereas the labyrinth (Lb) consists of fetal vessels, trophoblasts, and maternal blood spaces, providing the site for fetal-maternal exchange

(53). (d) In Runx1lacZ/+ placentas, oblong lacZ+ cells (arrow) were resident in the chorioallantoic mesenchyme (40X). (e) At E11.5, lacZ+ cuboidal cells (arrow),

which ultimately form the Crypt of Duval, present as tubular structures in the chorioallantoic mesenchyme. (f) Chorioallantoic vessels of Runx1lacZ/+ placentas
254 Cell Stem Cell 2, 252–263, March 2008 ª2008 Elsevier Inc.
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In the AGM, an established site of HSC emergence, lacZ+ cells

were localized to the dorsal aorta in both the heterozygous

(Runx1lacZ/+) and null (Runx1lacZ/lacZ and Runx1lacZ/�) embryos

(Figures 1Aa and 1Ab). Although Runx1-lacZ+ cells were more

prominent in the ventral side of the aorta, in some sections

lacZ+ cells circumscribed the entire aorta. In contrast to the

AGM, the liver does not generate HSCs de novo but functions

as a site of expansion and differentiation for definitive hemato-

poietic cells seeded from other sources. Accordingly, lacZ+

hematopoietic cells had colonized the liver in Runx1lacZ/+ em-

bryos, but not in the Runx1lacZ/lacZ embryos (data not shown).

In Runx1lacZ/+ placentas, multiple lacZ+ cell types were found.

Oblong-shaped lacZ+ cells were scattered in the chorioallantoic

mesenchyme that surrounds the large placental vessels (Fig-

ure 1Ad). The chorioallantoic mesenchyme also harbored cuboi-

dal cells that stained for lacZ and cytokeratin (Figure 1Ae). These

cells are derived from ectoplacental endoderm and form struc-

tures called Crypts of Duval (Duval, 1891; Ogura et al., 1998).

At E10.5–11.5, lacZ+ cells were also found integrated in the wall

of the chorioallantoic vessels, reminiscent of lacZ+ cells in the

AGM (Figure 1Af). Finally, round lacZ+ cells, which sometimes

were arranged in small clusters, were found within the lumen of

the labyrinth vessels between E10.5 and E12.5 (Figure 1Ag).

Interestingly, Runx1lacZ/lacZ placentas revealed similar popula-

tions of oblong lacZ+ cells in the mesenchyme and endothelial-

like lacZ+ cells integral to the wall of the large chorioallantoic ves-

sels (Figure 1Ah), suggesting that these lacZ+ cells may be the

precursors that would give rise to HSCs if Runx1 were present.

In contrast, in the null, lacZ+ cells were never found in the lumen

of the labyrinth vasculature (Figure 1Ai), implying that the labyrinth

lacZ+ cells in the Runx1lacZ/+ placentas are fully emerged definitive

hematopoietic cells. Cytokeratin+lacZ+ Crypts of Duval were also

prevalent in the Runx1lacZ/lacZ placentas (Figure 1Ah).

To investigate whether placental microenvironment stimulates

proliferation of HSCs, cells undergoing mitosis were identified

with an antibody specific to phosphorylated serine 10 at histone

3 (pH3S10). As expected, pH3S10 colocalized with lacZ+ hema-

topoietic cells in the Runx1lacZ/+ liver (Figure 1Ba). In contrast, in

the AGM, PH3S10 rarely colocalized with the abundant lacZ+

cells attached to the ventral wall of the dorsal aorta (Figure 1Bb).

Interestingly, in Runx1lacZ/+ placentas, mitotically active lacZ+

cells were found in the labyrinth vessels, occasionally forming

clusters with other lacZ+ cells (Figures 1Bc–1Be). In contrast,

the lacZ+ cells in the chorioallantoic mesenchyme were rarely

dividing (data not shown). These findings point to the placental

labyrinth vessels as a microenvironment that supports expan-

sion of definitive hematopoietic cells.

CD41 Expression Defines Localization of Candidate
HSCs in Placental Vasculature
As Runx1 expression is not restricted to HSCs, known markers

for nascent HSCs and differentiated blood cells were utilized to
verify hematopoietic identity. Previously, we and others have

described CD41 (integrin alpha2b, GpIB) as a marker for nascent

HSCs and progenitors (Corbel and Salaun, 2002; Ferkowicz

et al., 2003; Matsubara et al., 2005; Mikkola et al., 2003; Mitja-

vila-Garcia et al., 2002). After E11.5, CD41 expression declines

in HSCs and is restricted to megakaryocytes/platelets and

some progenitors. Although CD41 expression in the placenta

has not yet been studied as extensively as in other hematopoietic

sites, our data show that all myelo-erythroid clonogenic progen-

itors and most robust B lymphoid potential of E10.5–11.0

placentas reside in the CD41+ fraction (Figure S2). As expected,

a high degree of colocalization of Runx1 and CD41 expression

was shown by FACS analysis of hematopoietic tissues of

Runx1-GFP embryos and IHC analysis of Runx1-lacZ embryos

(Figure S1). Interestingly, CD41+ hematopoietic cells were con-

fined to the vasculature and were never found in the chorioallan-

toic mesenchyme underneath the vessels. As early as E9.5–10.5,

placental CD41+ cells were found within the wall of the chorioal-

lantoic vessels protruding into the vessel lumen (Figures 2Aa and

2Ab) and then became prominent in the lumen of the vessels in

the mesenchyme and the developing labyrinth (Figures 2Ab

and 2Ac). Of note, CD41+ maternal platelets were found in the

trophoblast-lined maternal spaces, whereas fetal platelets

appeared after E10.5 in placental and embryonic vasculature.

In the AGM, CD41+ cells were also associated with the dorsal

aorta or other vessels in the trunk (Figure 2Ca), and we have

previously reported CD41+ hematopoietic clusters in the yolk

sac vasculature (Ferkowicz et al., 2003; Mikkola et al., 2003).

Although these results do not reveal the origin of the precursor

of the CD41+ hematopoietic cells, these studies do highlight

the vasculature in the placenta, the embryo proper, and the

yolk sac as the sites in which definitive hematopoietic cells

may first appear.

To define whether the chorioallantoic mesenchyme stroma

harbors other hematopoietic cells, placentas were screened for

a panel of hematopoietic markers. Ter119+ red blood cells

were found solely in the fetal and maternal blood spaces (data

not shown). In contrast, many cells in the chorioallantoic mesen-

chyme expressed F4/80, a macrophage marker (Figure 2Ba).

Serial sections and costainings showed that some F4/80+ cells

coexpressed the pan-hematopoietic marker CD45 and mono-

cyte-macrophage marker Mac1 (Figure 2Bb and data not shown).

These results suggest that a primitive macrophage population,

distinct from CD41+ nascent definitive HSCs and adult macro-

phages that always express CD45, develops in placental mesen-

chyme. Absence of F4/80+ macrophages in the chorioallantoic

mesenchyme of the Runx1lacZ/lacZ and Runx1lacZ/� placentas

verified that the macrophages are of fetal, not maternal, origin

(data not shown). F4/80 macrophages were also found in the

yolk sac, at the junction where the yolk sac connects with the

placenta, and the mesenchyme surrounding the umbilical cord

and the dorsal aorta (data not shown and Figure 2Cb).
harbor lacZ+ candidate HSCs (arrow) within the vessel wall. Asterisk (*), Crypt of Duval. (g) Labyrinth vessels of the Runx1lacZ/+ placenta harbored a number of

lacZ+ cells (E11.5, 403, 1003). (h) Runx1lacZ/lacZ placentas had lacZ+ cells incorporated into the wall of chorioallantoic vessels (arrow) and in the surrounding

mesenchyme (arrowhead). Asterisk (*), Crypt of Duval (E11.5, 403). (i) However, Runx1lacZ/lacZ labyrinth vessels never contained lacZ+ cells (E11.5 40X).

(B) Colocalization of Runx1-lacZ expression and pH3S10 (dark purple/brown), a marker of mitosis, in (a) Runx1lacZ/+ fetal liver documents expected proliferation of

definitive hematopoietic cells (E11.5, 40X). (b) In the AGM, lacZ+ cells rarely colocalized with pH3S10 (E10.5, 203). (c–e) The placental labyrinth vessels harbored

lacZ+ cells (arrow) that costained with pH3S10 (E10.5, 403, 1003).
Cell Stem Cell 2, 252–263, March 2008 ª2008 Elsevier Inc. 255
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Figure 2. Definitive Hematopoietic Cells and Macrophages Segregate into the Vascular and Stromal Compartments of the Placenta

Fixed frozen sections stained with hematopoietic markers (blue), CD31 (endothelium, red), and cytokeratin (trophoblasts, brown).

(A) (a and b) In wild-type placentas, CD41+ nascent definitive hematopoietic cells (arrows) were integrated into the chorioallantoic vessels (E10.0, 203, 1003).

Asterisk (*), maternal platelets. (c) At E11.5, CD41+ cells populated the labyrinth (E11.5, 103).

(B) (a) F4/80+ macrophages populate the placental mesenchyme (E11.5, 103). (b) Some cells in the mesenchyme expressed the pan-hematopoietic marker

CD45 (E11.5, 103).

(C) (a) Rare CD41+ cells (arrow) emerge from the ventral wall of the dorsal aorta (E11.5, 103). (b) F4/80+ macrophages localize to the mesenchyme surrounding

the dorsal aorta (E11.5, 103).
Ncx1�/� Embryos Document the Emergence of
Definitive Hematopoietic Cells in the Placental
Vasculature in the Absence of Circulation
To verify whether the HSCs found in the placenta are generated

in situ or are merely imported via circulation, we utilized the Ncx1

knockout mouse model. Ncx1�/� embryos have no heartbeat

due to a defect in the sodium-calcium exchange pump 1 and

do not survive beyond E10.5 (Koushik et al., 2001). As trafficking

of hematopoietic cells between tissues via the bloodstream is

abolished in the absence of a heartbeat, Ncx1�/� embryos pro-

vide a unique model in which to assess de novo hematopoietic

potential in individual sites. Importantly, Ncx1 is not expressed

in hematopoietic cells, eliminating the possibility of cell-autono-

mous defects (Lux et al., 2007).

At E8.5, Ncx1�/� embryos were indistinguishable from control

littermates (Ncx1+/+ and Ncx1+/�), whereas from E9.5 onward,

mutant embryos were pale due to lack of circulating blood cells

(Figure 3A). Ter119+ primitive erythroblasts were observed in the

yolk sac, where they are generated, in both control and Ncx1�/�

embryos (Figure 3B). Although placental vasculature had started

to develop in the Ncx1�/� embryos independent of the physical

forces associated with blood flow, the endothelial-lined fetal

blood spaces were devoid of circulating erythroblasts, whereas
256 Cell Stem Cell 2, 252–263, March 2008 ª2008 Elsevier Inc.
the trophoblast-lined spaces were filled with smaller maternal

red blood cells (Figure 3Cb). Strikingly, immunohistochemical

analysis showed emergence of CD41+ nascent hematopoietic

cells in Ncx1�/� placentas in the same locations as in the wild-

type placentas, coupled with the vessels of the chorioallantoic

mesenchyme and developing labyrinth. Occasionally, CD41+

cells formed clusters that were connected to the vessels (Figures

3Ea–3Ed). Although CD41+ cells were less frequent in Ncx1�/�

placentas than in wild-type controls (on average 2.2 CD41+ cells

in Ncx1�/� placental section versus 13.6 CD41+ cells in control

section), the mutants frequently displayed prominent CD31+

cell aggregates consisting of round cells that were found pro-

truding into the lumen of the vessels (Figures 3Cb and 3Ed). In

umbilical cord, a proposed site of HSC emergence (de Bruijn

et al., 2000), a similar aggregate of CD31+ cells contained

CD41+ hematopoietic cells (Figure 3Ed). It is possible that these

aggregates represent hemogenic intermediates that accumulate

in the mutant in the absence of blood flow.

Placenta-Derived Hematopoietic Cells Exhibit Myelo-
Erythroid and Lymphoid Differentiation Potential
As the Ncx1�/� embryos become developmentally retarded and

die by E10.5, further assessment of HSC development in vivo
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was not possible. In order to verify that hematopoietic cells in the

Ncx1�/� placentas are capable of multilineage differentiation, we

assessed their potential in vitro. Hematopoietic tissues were har-

vested between E8.5 and E9.5 to assay their developmental po-

tential without possible acquisition of secondary defects due to

the lack of circulation. Hematopoietic potential was assayed on

OP9 and OP9-DL1 stroma that support myelo-erythroid,

B-, and T lymphoid differentiation (Figure 4A) (Schmitt and Zu-

niga-Pflucker, 2002). The placentas in control and Ncx1�/� em-

bryos generated mixed hematopoietic outgrowth in culture, in-

cluding definitive progenitors that expressed c-Kit and CD41

(Figure 4B). Similar populations developed also from dissociated

yolk sac and caudal half explants (data not shown). When the

myelo-erythroid differentiation potential of the progenitors ob-

tained by the explant culture was assayed on methylcellulose,

Ncx1�/� tissues generated erythroid, myeloid, and mixed colo-

nies, similar to controls (Figure 4C and Figure S3B). PCR geno-

typing revealed that these colonies are of fetal, not maternal, or-

igin (Figure 4D). Culture of Ncx1�/� tissues on growth conditions

that promote B lymphoid development generated an abundant

B220+ population from all three hematopoietic organs (Fig-

ure 4E). As CD19 expression in B cells derived from the tissue

explants in these culture conditions was low, genomic PCR of

B cell-specific IgH locus rearrangements was performed and

confirmed by sequencing (data not shown). Furthermore, when

cultured on OP9-DL1 stroma that supports T lymphoid differen-

tiation, all three hematopoietic tissues generated T lymphoid

cells that ranged from immature T cell (CD44+/�CD25+/�) pre-

cursors to more mature T cells (CD4+/�CD8+/�) (Figure 4F).

Although E9.0–9.5 embryos were used in most studies, compa-

rable results were obtained from the analysis of tissues from

E8.5–8.75 embryos, isolated right after chorioallantoic fusion

when circulation is first initiated. Of note, at this stage, the allan-

tois/developing umbilical cord and the placenta were analyzed

as one unit, whereas at E9.5, the umbilical cord was dissected

out to verify that the hematopoietic potential was in the placenta

proper. When the yolk sac was analyzed, the vitelline vessels

were not separated, and therefore we cannot discern where

in the yolk sac/vitelline vasculature HSCs arise. Taken together,

these data show that, in addition to the AGM and the yolk

sac, the placenta is capable of de novo generation of multipoten-

tial definitive hematopoietic cells that can differentiate into

myeloid, erythroid, and lymphoid lineages, indicative of develop-

ing HSCs.

DISCUSSION

The origin of hematopoietic stem cells has remained a focus of

intense research, and the model of fetal hematopoiesis continues

to evolve as new hematopoietic sites are discovered. Our goal

was to assess whether the placenta, a recently discovered fetal

hematopoietic organ, generates definitive HSCs de novo. Using

the Runx1-lacZ and Ncx1 knockout mouse models, we found

that definitive hematopoietic cells encompassing both myelo-

erythroid and lymphoid potential are generated in the placenta.

Emergence of HSCs is closely associated with the large vessels

of the placenta, reminiscent of the process that occurs in the

dorsal aorta and the vitelline and umbilical arteries. These studies

imply that the conception of HSCs extends to a much larger
anatomical area than was previously thought. Furthermore, our

data suggest that the vascular network in the placental labyrinth

may provide a unique hematopoietic niche that is conducive to

the proliferation of hematopoietic cells and serves as a supportive

niche for a large pool of HSCs prior to liver colonization.

The cellular origin of the HSC has been debated for decades

(reviewed in Jaffredo et al., 2005). One theory posits that HSCs

arise from hemogenic endothelium, where specialized endothe-

lial cells generate clusters of hematopoietic cells that bud into

the vascular lumen. An alternative theory proposes that a meso-

dermal precursor, peripheral to the vasculature, is specified

for hematopoietic lineage before crossing the endothelial wall

to the vascular lumen (Bertrand et al., 2005). Localization of

Runx1 expression in the placenta did not define whether the pre-

cursor to the HSC resides within the endothelial wall or subvas-

cular mesenchyme, as lacZ expression was found in both sites in

the Runx1lacZ/+ and Runx1lacZ/lacZ embryos (Figure 1), and other

cells in addition to HSCs express Runx1. Interestingly, we found

that the subvascular mesenchyme was populated by macro-

phages, whereas CD41+ nascent definitive hematopoietic cells

always appeared within the vessels. Further studies will be

required to define where the precursors for definitive

hematopoietic cells and macrophages arise. Expression of en-

dothelial markers CD31, VE-Cadherin, and CD34 in HSCs has

been implicated as evidence of a close developmental ancestry

between HSCs and endothelial cells (Fraser et al., 2002; Taoudi

et al., 2005; Yoder et al., 1997a). Interestingly, the Ncx1�/� pla-

centas frequently displayed large aggregates of CD31+ cells

that were protruding into the lumen. As these aggregates were

not found in the controls, it is likely that they form due to lack

of developmental signals normally conveyed by blood flow. It

is possible that they are comprised of precursors to definitive

hematopoietic cells that are stalled during their emergence into

the vascular lumen. Indeed, the CD31+ aggregates consist of

round cells that are morphologically similar to hematopoietic

cells, and cells in one of the clusters in the umbilical cord also

expressed CD41. Alternatively, they may represent endothelial

cells that are unable to organize properly in the absence of blood

flow. Mechanical forces created by circulation promote a re-

sponse through mechanosensory receptor complexes in the

endothelial cells to release angiogenic factors, such as VEGF

(Tzima et al., 2005), which are also essential for hematopoiesis.

Therefore the absence of blood flow may impair both vasculo-

genesis and hematopoiesis. Nevertheless, the fact that placental

vasculogenesis and hematopoiesis are initiated in Ncx1�/�

embryos highlights the importance of the local signals in the

placenta in induction of vessel formation and hematopoiesis.

The formation of hematopoietic cells from mesoderm de-

mands specific signals from the surrounding microenvironment,

including Indian Hedgehog (Ihh) and bone morphogenic protein

4 (BMP-4) (Baron, 2003). In the yolk sac, these signals arise

from the visceral endoderm of the yolk sac, and in the embryo

proper, from the visceral endoderm adjacent to the ventral side

of the dorsal aorta. The avian allantois is known to have an endo-

dermal component, whereas there is no evidence of an endoder-

mal component in the mammalian allantois. Interestingly, the

chorioallantoic mesenchyme of the placenta harbors endoder-

mal structures known as Crypts of Duval (Figure 1) (Duval,

1891; Ogura et al., 1998). These structures express Ihh, whereas
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Figure 3. Definitive Hematopoietic Cells Emerge De Novo in Placental Vasculature in Ncx1�/� Mutants

(A) Images of embryos depict the absence of blood in the Ncx1�/� mutants due to the lack of circulation.

(B–E) Fixed frozen sections of E10.0 hematopoietic tissues stained with hematopoietic markers (blue), CD31 (endothelium, red), and cytokeratin (trophoblasts,

brown).

(B) Yolk sac sections from both the Ncx1+/+ and Ncx1�/� embryos show generation of Ter119+ primitive erythroblasts in yolk sac blood islands (1003). Note, in

control yolk sac, only Ter119 staining is displayed.
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the mesenchymal cells surrounding the crypts express Patched-

1 (Ptch1), a receptor of Hedgehog signaling (Jiang and Herman,

2006). As the Crypts of Duval are in close proximity to the large

vessels that generate HSCs, these endodermal structures may

provide critical signals involved in the orchestration of HSC

emergence in the placenta.

The timing of HSC emergence in the placenta, based on

markers of developing HSCs in the vessels and appearance of

first adult repopulating HSCs (Gekas et al., 2005), parallels that

in the AGM, implying that hematopoiesis is initiated concomi-

tantly in both sites. However, when the emergence of HSCs

already ceases in the AGM, the number of adult repopulating

HSCs in the placenta continues to increase (Gekas et al., 2005;

Kumaravelu et al., 2002). Although both the AGM and the yolk

sac possess HSC supportive capabilities, as evidenced by stud-

ies documenting that yolk sac and intraembryonic endothelial

and stromal lines have the ability to maintain HSCs ex vivo (Li

et al., 2003; Matsuoka et al., 2001; Oostendorp et al., 2002),

lack of accumulation of a large pool of HSCs in vivo supports

the hypothesis that these sites function in HSC generation rather

than expansion. In comparison, in addition to the large chorioal-

lantoic vessels where placental hematopoietic cells first emerge,

the placenta contains another hematopoietic niche within the

small vessels in the labyrinth. Presence of Runx1-lacZ+ hemato-

poietic clusters and colocalization of a mitosis marker with

Runx1-lacZ+ cells in the placental vascular labyrinth suggest

that, rather than simply providing a gateway for hematopoietic

cells to pass through, the placental labyrinth may provide a

microenvironment where definitive hematopoietic cells prolifer-

ate. The placental labyrinth has many unique features, such as

the proximity of trophoblast cells, which release growth factors

and cytokines, and influence from the maternal side that may

contribute to its suitability as a hematopoietic niche. As the

placenta is positioned between the dorsal aorta and the fetal liver

in fetal circulation, the placental labyrinth may provide a transi-

tory niche for HSCs generated in the placenta and other sites

before liver colonization.

Analysis of the hematopoietic potential in extraembryonic and

intraembryonic tissues in Ncx1 mutants verified myeloid and

lymphoid potential in not only the AGM and the placenta but

also the yolk sac, suggesting that all three sites may indepen-

dently generate HSCs. These data, combined with evidence

from literature (Hadland et al., 2004; Lux et al., 2007; Palis

et al., 1999), supports a model of at least three waves of hema-

topoiesis during embryogenesis. The first, primitive wave,

occurs in the yolk sac, and generates a burst of primitive ery-

throid cells. The second wave, production of transient definitive

progenitors, is initiated in the yolk sac, after which the progeni-

tors circulate into the liver and give rise to definitive erythroid

and myeloid cells that are the first mature blood cells released

by the liver. The third wave, formation of HSCs, occurs in the

large arteries and is not only confined to the AGM but also
most likely occurs within the umbilical and vitelline arteries, the

placenta, and the yolk sac (Figure 5). These programs are regu-

lated in part by different mechanisms. As an example, Notch1

signaling is not required for generation of the primitive or the

transient definitive progenitors in the yolk sac, but it is essential

for formation of HSCs in the pSP/AGM (Hadland et al., 2004;

Kumano et al., 2003). As hematopoietic cells from the distinct

programs have different potential when placed in identical cul-

ture conditions or when transplanted into irradiated hosts, it is

evident that cell-intrinsic regulatory mechanisms, including

epigenetic modifications established during development, dic-

tate the variable future developmental potential of these cells.

However, far more needs to be learned about how these hema-

topoietic programs become segregated. Therefore, in order to

generate HSCs de novo, for example from embryonic stem cells,

it is critical that the correct microenvironmental cues are present

from the beginning to secure the accurate developmental

program toward self-renewing HSCs. The ability to recreate

these developmental programs in vitro is dependent upon our

success in defining these programs in vivo. Understanding

how the major arterial regions generate HSCs and how these

nascent hematopoietic cells are protected from premature dif-

ferentiation in their native niches will be essential in advancing

us toward this goal.

EXPERIMENTAL PROCEDURES

Mouse Models

Runx1-lacZ and Runx1+/� knockout mouse strains were obtained from Nancy

Speck and Gary Gilliland (North et al., 1999; Wang et al., 1996), and Runx1-

GFP mice (Figure S1) were from James Downing (Lorsbach et al., 2004). Timed

matings were set up between Runx1lacZ/+ males and Runx1lacZ/+ or Runx1+/� fe-

males. Runx1+/�dams were used specifically to verify that lacZ+ cells are of fetal

origin. Theprimers used forgenotyping were as follows: lacZ F, 50-TACCACAGC

GGATGG TTCGG-30 and R, 50-GTGGTGGTTATGCCGATCGC-30 (450 bp);

Runx1-WT F, 50-CACCTGTCTCTGCATCGCAGGACT-30 and R, 50-CCATCC

GTGACAGATACGCAC CTC-30 (450 bp); and Runx1-KO F, 50-GAGTCCCAGCT

GTCAATTCC-30 and R, 50-GGTGATGGTCAGAGTGAAGC-30 (850 bp).

Ncx1 knockout mouse model was generated as described (Koushik et al.,

2001) by inserting b-galactosidase gene into the Ncx1 locus. Primers for geno-

typing were Ncx1 sense 50-TGATGACCGGAGCTGGCAAC-30 and antisense

50-AGATCACAGTCCCTTCCGTG-30 (300 bp) for the wild-type allele and the

same lacZ primers listed above for the mutant allele.

To generate wild-type embryos, timed matings were set up between C57Bl/6

female and C57Bl/6.SJL male mice (Taconic, Oxnard, CA). All mice were main-

tained according to the guidelines of the UCLA Animal Research Committee.

Preparation of Paraffin-Embedded Tissue Sections

In experiments with Runx1-lacZ mouse model, b-galactosidase staining was

performed according to the manufacturer’s protocol (Chemicon) prior to prep-

aration of the paraffin blocks and tissue sections. Subsequently, fetal hemato-

poietic tissues were fixed in formalin (10% Buffered Formalin, Fisher) at room

temperature for 24 hr. After rinsing with running tap water for 15 min, tissues

were transferred to 70% ETOH. Small tissues from younger embryos were

embedded in Histogel (Richard Allan Scientific). Paraffin blocks were made
(C) (a) Fetal vessels (arrow) were filled with Ter119+ red cells in the Ncx1+/+ placenta, whereas (b) the vessels (arrow) in Ncx1�/� placentas were empty. The

asterisk (*) indicates Ncx1�/� placentas that did harbor maternal Ter119+ cells within the trophoblast lined maternal blood spaces (203).

(D) An Ncx1+/+ control placenta stained with CD41 documents localization of definitive hematopoietic cells (203).

(E) (a–d) Ncx1�/� placentas demonstrate the emergence of CD41+ cells (arrows) in placental vasculature in the absence of blood flow (403, insets 1003).

Arrowhead marks unique CD31+ aggregates in the placenta (203, inset 1003). (d) Arrow and inset show CD31+CD41+/� aggregate in the umbilical cord of

an Ncx1�/� embryo.
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Figure 4. Definitive Hematopoietic Cells Derived from Ncx1�/� Placentas Have Myelo-Erythroid and Lymphoid Potential

(A) Placenta, yolk sac, and caudal half of the embryos were dissected, and the tissue explants were cultured on OP9 and OP9-DL1 stroma. Myelo-erythroid and B

lymphoid potential was assessed after plating of the cells from the OP9 stroma on methylcellulose culture, whereas T lymphoid potential was assessed directly on

OP9-DL1 stroma.
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Figure 5. Revised Model of Embryonic

Hematopoietic Sites

Fetal hematopoiesis can be divided into at least

three different waves. The first waves of hemato-

poiesis occur in the yolk sac: the primitive wave,

which gives rise to primitive erythroblasts, and

the transient definitive wave, which generates

myelo-erythroid progenitors that first colonize the

liver. In contrast, the emergence of adult repopu-

lating HSCs occurs in multiple sites yet is confined

to the major blood vessels: the dorsal aorta, the

adjacent vitelline, umbilical vessels. and as shown

in this study, the large vessels of the placenta.

Subsequently, HSCs generated in the placenta

and possibly the AGM and yolk sac are directed

via blood flow to the placental labyrinth, which

may provide a unique environment for HSC expan-

sion/maturation prior to seeding of the fetal liver.

Pink marks mesodermal tissues with hematopoi-

etic potential (al, allantois; ch, chorion; ys, yolk

sac; and p-sp, para-aortic splanchopleura) and

their derivatives (ua, umbilical artery; cv, chorio-al-

lantoic vessels; va, vitelline artery; and da, dorsal

aorta), and brown marks trophoectodermal tis-

sues (epc, ectoplacental cone and lb, placental

labyrinth). Dec, maternal decidua and fl, fetal liver.
by standard protocol at the Tissue Procurement and Histology Core Labora-

tory, Pathology and Laboratory Medicine at UCLA and cut into 5 mm sections.

Preparation of Frozen Tissue Sections

Tissues were isolated in cold 13 PBS and fixed in 4% PFA (Electron Micros-

copy Sciences diluted) for 4–6 hr, followed by equilibration in 30% sucrose

in PBS solution overnight. The tissues were placed in 1:1 30% sucrose/OCT

solution for 1–2 hr, in 100% OCT (Tissue-Tek, Electron Microscopy Sciences)

for 1 hr at 4�C, and embedded in 100% OCT, carefully oriented in Cryomold

(Tissue Tek). The blocks were frozen on dry ice and stored at �80�C. The

sections were cut 7–10 mm with a Leica CM3050 S cryostat.

Immunohistochemistry on Paraffin Sections

Paraffin sections were stained with primary antibodies that identify key cell

types in the placenta: polyclonal rabbit anti-laminin for mesodermal derivatives

in the placenta (1:600, DakoCytomation) and polyclonal rabbit anti-cow

pan-cytokeratin for trophoblasts and epithelium (1:1000, DakoCytomation).

Proteinase K treatment (100 mg/ml, 10 min) was used for antigen retrieval in

most experiments, whereas TRIS-EDTA (pH 9.0) treatment was performed

prior to pH3S10 staining. Biotinylated anti-rabbit IgG secondary antibody

(1:1000,Vector) was used in conjunction with laminin, cytokeratin, and

PH3S10. Immunohistochemistry was performed according to standard proto-

cols with the Vectastain ABC kit for DAB (brown) and Vector VIP (dark purple/

brown) and Vectastain ABC-AP kit for Vector Red and Vector Blue (Vector).

Immunohistochemistry on Fixed Frozen Sections

A modified standard staining protocol was used for fixed frozen sections. The

sections were treated with 2.5 mg/ml of Proteinase K for 10 min. Primary anti-
bodies, CD41 (1:50 BD PharMingen), CD45 (1:50 BD PharMingen), Mac1

(1:200 BD PharMingen), F4/80 (1:200 eBioscience), and PECAM-1/CD31

(1:200, BD PharMingen) were used on fixed frozen sections with Tyramide

(Invitrogen) amplification according to the manufacturer’s protocol. Ter119

(1:50 eBioscience) and cytokeratin (1:1000 DakoCytomation) were used with-

out Tyramide amplification. Biotinylated anti-rabbit IgG (1:1000,Vector) was

used as a secondary antibody for cytokeratin, whereas biotinylated anti-rat

IgG (1:1000, Vector) was used for all other primary antibodies.

Flow Cytometry and Cell Sorting

Flow cytometry was performed by rat anti-mouse monoclonal antibodies

against c-Kit, CD41, CD34, Sca1, Mac-1, Gr-1, B220, CD19, CD44, CD25,

CD4, CD8 (BD Bioscience) F4/80, and CD45 (eBioscience). Dead cells were

excluded with 7AAD staining (BD PharMingen). Cells were assayed on a BD

LSRII flow cytometer and data were analyzed with FlowJo software (Tree

Star Inc., Ashland, OR). Hematopoietic tissues from E10–11 embryos were

fractionated into CD41+ and CD41� populations by BD FACS Aria and BD

FACS Vantage sorter, and developmental potential of the sorted cells was

assayed on OP9 stroma and methylcellulose cultures.

OP9 and OP9-DL1 Explant Cultures

Fetal organ explants were cocultured on mouse OP9 stromal cells in 24-well

plates in 1 ml a-MEM (GIBCO/Invitrogen) containing 20% fetal bovine serum

(Hyclone), 1% penicillin/streptomycin and supplemented with stem cell factor

(SCF, 50 ng/ml), interleukin-3 (IL3, 5 ng/ml), interleukin-6 (IL6, 5 ng/ml), Throm-

bopoietin (TPO, 5 ng/ml), interleukin 7 (IL-7, 10 ng/ml), and Flt-3 Ligand (Flt-3L,

10 ng/ml) for 4 days. Half of the medium with cytokines was replaced every

other day. To assay B lymphoid potential, explants were replated on fresh
(B) Flow cytometry reveals robust generation of c-Kit+CD41+ definitive progenitors from E8.5 Ncx1+/+ and Ncx1�/� placentas during OP9 coculture.

(C) Analysis of myelo-erythroid colonies differentiated on methylcellulose after OP9 coculture reveals development of mixed, myeloid, and erythroid colonies from

Ncx1�/� and control tissues. Colonies are derived from 0.2 embryo equivalents of tissue. Error bars represent the standard deviation.

(D) PCR analysis of individual colonies derived from Ncx1+/+ and Ncx1�/� placentas documents fetal origin of the colonies. (a) PCR for Ncx1 wild-type allele, (b)

PCR for Ncx1-lacZ allele. Three colonies of each genotype are shown of 20 total colonies/genotype that were analyzed. Maternal colonies (Ncx1+/�) were never

observed.

(E) Flow cytometry of hematopoietic cells differentiated on methylcellulose after OP9 coculture shows B220+ B lymphoid cells derived from placenta, yolk sac,

and caudal half tissues of control and Ncx1�/� embryos. Plots from a representative experiment of four total experiments are shown.

(F) Flow cytometry performed after explant culture on OP9-DL1 stroma documents robust T cell potential in Ncx1+/+ and Ncx1�/� embryos in all hematopoietic

tissues. Both immature T lymphoid precursors (CD44+/�CD25+/�) and more mature T cells (CD4+/�CD8+/�) were observed. Total of three experiments were

performed, and representative plots are shown.
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OP9 stromal cells and grown in the same media but supplemented with

B cell promoting cytokines only: IL7 (100 ng/ml), SCF (50 ng/ml), and Flt-3L

(40 ng/ml).

To investigate T lymphoid potential, tissue explants were plated directly on

OP9-DL1 stroma and supplemented with TPO (5 ng/ml), IL7 (1 ng/ml), SCF

(50 ng/ml), and Flt-3L (5 ng/ml). After 4 days of culture, TPO was withdrawn.

T lymphoid differentiation was assessed after 10–15 days of culture.

Colony-Forming Assays

To determine myelo-erythroid potential of the tissues, explants were

dissociated mechanically after 4 days of OP9 coculture and plated on 1.5 ml

methylcellulose with SCF, IL-6, IL-3, and EPO (MethoCult 3434, Stem Cell

Technologies) supplemented by TPO (5 ng/ml). Colonies were scored 6–8

days later. In Ncx1�/� experiments, individual colonies were genotyped by

PCR to verify fetal identity of the hematopoietic colonies.

To assay B cell maturation, after 6–10 days of OP9 culture in B cell promot-

ing conditions, cells were plated on B lymphoid methylcellulose assay supple-

mented with IL7 (100 ng/ml), SCF (50 ng/ml), and Flt-3L (40 ng/ml), harvested

after 14–17 days, and analyzed by flow cytometry. B cell identity was con-

firmed by IgH D-J rearrangement PCR as previously described (Ehlich et al.,

1994) and verified by sequencing by the UCLA Sequencing and Genotyping

Core Facility following gel extraction (QIAquick Gel Extraction Kit, QIAGEN).

SUPPLEMENTAL DATA

Supplemental Data include three figures and can be found with this article

online at http://www.cellstemcell.com/cgi/content/full/2/3/252/DC1/.
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